# Study of Modifiable Risk Factors of Chronic Diseases (hypertension and diabetes type 2) in the Province of Berkane: Eastern Region of Morocco 

Saliha MHARCHI*, Abdellatif MAAMRI


#### Abstract

Background: The prevalence of mortality due to chronic diseases is quite high in Morocco ( $80 \%$ ), where hypertension and type 2 diabetes are the tip of the iceberg. Aims: This study aimed to estimate the prevalence of chronic disease: Type 2 Diabetes Mellitus (T2DM), hypertension, and the profile of modifiable risk factors in the eastern region of Morocco (Berkane). Methods: This was a cross-sectional study of adults ( $\geq 18$ years) consulting at health centers in primary care facilities. It involved a total of 404 participants. The questionnaire used includes socio-demographic, clinical and biological information of the consultants, Multiple logistic regression was used to estimate the factors associated with chronic disease (CD). Results: The prevalence of T2DM was $21 \%$ and that of hypertension was $16.58 \%$, undiagnosed T2DM constituted $12.12 \%$ and unknown hypertension $5.44 \%$. The risk factors (RF) detected in the overall population were physical inactivity $74 \%$, abdominal obesity $61 \%$, sedentary lifestyle $57.42 \%$, overweight $40 \%$, peripheral obesity $31 \%$, stress $47.27 \%$, smoking $7 \%$ and alcohol use $3 \%$. While the common RF incriminated in the pathogenesis of T2DM and hypertension were general overweight ( $p=0.014$ ) vs ( $p=0.014$ ), or visceral overweight ( $p=0.016$ ) vs ( $p=0.0001$ ). Conclusion: In the long term, diabetics and hypertensives are at risk of developing several complications that are detrimental to their health status and costly to the health system.


Keywords: Chronic diseases, eastern region, hypertension, risk factors, Type 2 Diabetes.

[^0]
## *Corresponding author.

Saliha MHARCHI, Water, Environment \& Health team, LAPABE laboratory, Faculty of Science, Mohammed First University, Oujda. E-mail: salihamharchi@gmail.com

## INTRODUCTION

Over the past 30 years, chronic diseases (including cardiovascular disease, cancer, chronic respiratory disease, and diabetes) have become a growing global burden, accounting for seven out of ten deaths worldwide ${ }^{1}$. They are responsible for 41 million of the 57 million deaths worldwide, or $71 \%$, of which 15 million are premature deaths occurring between the ages of 30 and 69 years old, and over $85 \%$ of these "premature" deaths occur in low- and middle-income countries ${ }^{2}$.

A recent study showed that low- and middle-income countries have the highest risk of dying from Non-Communicable Disease (NCD), particularly in sub-Saharan Africa, Central Asia and Eastern Europe ${ }^{3}$;

They all share key behavioral risk factors that can be modified, including smoking, poor diet, lack of exercise, and harmful alcohol use ${ }^{4}$. These factors contribute to 4 metabolic changes that increase the risk of NCD: hypertension; overweight/obesity; hyperglycemia; and hyperlipidemia ${ }^{5}$. In terms of deaths, hypertension is the main metabolic risk factor worldwide (responsible for $19 \%$ of deaths worldwide), followed by overweight and obesity, then hyperglycemia ${ }^{5}$.

The Eastern Mediterranean region (MENA) is particularly affected by the invasion of CD especially in hypertension and type 2 diabetes. According to Abboud et al 2021, the prevalence of hypertension ranged from $15.2 \%$ in Saudi Arabia to $39.5 \%$ in Palestine ${ }^{6}$.

As a result, this region has a very large number of diabetics with one in six people living with diabetes ( 73 million) and this figure is expected to reach 95 million by $2030^{7}$. As everywhere in the world, Morocco does not escape this alarming situation, Morocco is among the first countries with a high prevalence of NCD mortality (80\%) in the Eastern Mediterranean region ${ }^{8}$. This exceeds the global average of $70 \%$ of deaths ${ }^{8}$. The epidemiological, demographic and nutritional transition that Morocco is undergoing are the factors favoring this expansive increase in NCD, in particular cancers, diabetes and cardiovascular diseases ${ }^{2}$. The cost of treating these diseases is very high, and the situation is all the more worrying since medical coverage only covers $62 \%$ of the population ${ }^{2}$.

At the level of the eastern region of Morocco, it was found that the age of people with T2DM has started to decline, attacking the population in active phase is younger between 30 to 49 years with $19.74 \%{ }^{9}$.

To this end, our objective was to determine the
prevalence of hypertension and T2DM as well as the risk factors related to lifestyle that are specific to the eastern region (Berkane province) and to highlight the links between these two variables (RF and chronic pathology).

## MATERIAL AND METHOD

## a. Region and population concerned

The province of Berkane: is located North-East of the Morocco and the region of the Oriental. Covering a total area of $1985 \mathrm{Km}^{2}$ ( $2.2 \%$ of the total area of the region). The province has 289137 inhabitants, ( $12.5 \%$ of the total population of the region with a density of 145.7 inhabitants / $\mathrm{km}^{2}$ ). The urbanization rate in the province of Berkane is located at $63.2 \%{ }^{10}$.

## b. Ethical considerations:

This research was approved by the Moroccan Ministry of health and social protection, obtaining the authorization of the regional director (representative of the Minister of Health in the eastern region of Morocco) to conduct this survey.

However, all ethical principles were respected in accordance with the principles stated in the Declaration of Helsinki: an informed consent written in Arabic and French was signed by each participant, the anonymity of the participants was guaranteed as no name or identifier was recorded, the questionnaires were then stored in a safe place, accessible only to the researcher, and the data extracted from the questionnaire were saved in a password protected computer.

## c. Study Design:

The survey is a prospective cross-sectional study, to be carried out between late 2019 and early 2020. The sample size is 404 . A random recruitment technique will be used to obtain 40 respondents in each health centre. The subjects interviewed were 18 years of age or older. d. Data collection instrument: comprised of two sections: Section A assessed sociodemographic and clinical data, while Section B assessed modifiable risk factors.

The researcher to ensure compliance of the data collected administered all questionnaires.

## DEFINING RISK FACTORS:

## Operating definition of variables:

Epidemiological data: age, gender, educational level, occupation, and basic medical coverage.

Anthropometric data: weight (kg), height (m), waist circumference ( cm ), BMI by formula: weight/ height ${ }^{2}\left(\mathrm{~kg} / \mathrm{m}^{2}\right)$.

Biological data: fasting or postprandial blood glucose and glycated hemoglobin using a glucose meter and a validated Hb 1 ac meter.

Diabetic status was self-reported, and patients who were newly diagnosed were referred to the physician for follow-up and confirmation and were included in the study only after two hb1ac tests were performed at 3 -month intervals. The criterion of blood glucose $\geq 7.0$ $\mathrm{mmol} / \mathrm{L}$ was used to assess the prevalence of diabetes ${ }^{11}$.

Abdominal obesity, defined according to the International Diabetes Federation (IDF) harmonized criteria, as a waist circumference (WC) $\geq 94 \mathrm{~cm}$ in men and $\geq 80 \mathrm{~cm}$ in women ${ }^{12}$.

Blood pressure measurement: after five minutes of rest, twice at three-minute intervals, using an OMRON electronic blood pressure monitor. The value taken was the average of the two measurements. Hypertension (HT) was defined as systolic blood pressure (SBP) $\geq$ 140 mmHg or diastolic blood pressure (DBP) $\geq 90$ mmHg , or in patients on antihypertensive therapy at inclusion ${ }^{13}$.

With respect to smoking and alcoholism, responses were divided into three categories: daily alcoholic/daily smoker, former smoker/former alcoholic, non-smoker/ non-alcoholic.

Sedentary behavior is defined as being awake in a sitting or lying position, associated with a very low energy expenditure, less than or equal to 1.5 MET (metabolic equivalent units) ${ }^{14}$.

Physical activity (PA) is defined as "any bodily movement produced by skeletal muscle contraction resulting in an increase in energy expenditure relative to resting energy expenditure ${ }^{14}$. The PA covers all activities that can be carried out in a variety of settings, including work, transportation, domestic and recreational activities; recreational activities include sports, so sport is only one component.

Level of stress: The Perceived Stress Scale (Cohen's PSS) consists of self-reported indicators of stress, which aim to quantify one's feelings according to a scale of perceived stress ranging from low, medium, high, very high ( 0 to 4$)^{15}$.

## f. Statistical analysis:

Initially, descriptive analyses were used to determine the crude prevalence of hypertension and T2DM, characteristic of the study population, the frequency
of environmental risk factors in the overall sample. $\mathrm{X}^{2}$ test, correlation, and binary regression statistical analyses were performed using SPSS software (version 22.0). The significance level was set at 0.05 .

## RESULTS

## A.Sociodemographic characteristics of the study population:

The characteristics of the study population are presented in the Table: 1.

Four hundred and four subjects were enrolled, 296 in urban and 108 in rural areas. The mean age of the participants was $41.1 \pm 11.1$ years, and the majority ( $72 \%$ ) was younger than 50 years. The female gender was the most dominant among our respondents, representing $71 \%$ of the participants. (Table 1)

## B. Prevalence of T2DM and hypertension: (Table 2)

According to the data in Table 2, the overall prevalence of all types of diabetes was estimated at $23.5 \%$, T2DM represented $21 \%$ of which $11.38 \%$ were known diabetics under treatment and $12.2 \%$ of diabetics newly diagnosed at the time of the survey were from urban $14 \%$ more than rural $8 \%$ (Figure 1). One person in ten reported having a family history of diabetes. The prevalence of T2DM increased significantly with age ( $\mathrm{p}=0.0001$ ) ranging from $20 \%$ for [18-33] year olds, to $43.52 \%$ for [50-65] year olds.

The overall prevalence of hypertension was $16.58 \%$, $11 \%$ of whom reported being hypertensive compared to $5.44 \%$ who did not know they were hypertensive. Almost half ( $41 \%$ ) of the hypertensive were from rural areas and only $8.2 \%$ were from urban areas (Figure 1). A significant proportion of men were hypertensive, $8.41 \%$ versus only $2.72 \%$. This prevalence increased significantly with age in both sexes, from $4.4 \%$ in [1833] year olds to $17.8 \%$ in [34-49] year olds and $77 \%$ over 50 years of age ( $66.7 \%$ in [50-65] year olds and $11 \%$ in over 66-year-olds) (p < 0.0001).

For systolic blood pressure (SBP) values, they were greater than 14 in one-third of the participants, and $33.4 \%$ had a DBP value greater than 9 .

## C. Risk factors in the total population: (Table 3)

The risk factors detected in our sample were physical inactivity $74 \%$, abdominal obesity $60.89 \%$, sedentary lifestyle 57.42 , overweight $40 \%$, stress $52.72 \%$, general obesity $31 \%$, and smoking $7 \%$ and alcohol use $2.47 \%$ (Figure 2).

Saliha MHARCHI et al.
Table 1 : Sociodemographic data of consultants

| Variables | Total number (\%) ( $\mathrm{n}=404$ ) | urban ( $\mathrm{n}=296$ ) 73\% | Rural ( $\mathrm{n}=108$ )27\% | P value IC95 |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Gender } \\ & \mathrm{M} \\ & \mathrm{~W} \end{aligned}$ | $\begin{aligned} & 116 \text { (28.71\%) } \\ & 288(71.28 \%) \end{aligned}$ | $\begin{aligned} & \text { 88(29.72\%) } \\ & \text { 208(70.27\%) } \end{aligned}$ | $\begin{aligned} & 28 \text { (25.92\%) } \\ & 80 \text { (74.07\%) } \end{aligned}$ | 0.456 NS |
| $\begin{aligned} & \text { Age (years)>18 years } \\ & 18-33(1) \\ & 34-49(2) \\ & 50-65(3) \\ & >66(4) \end{aligned}$ | $\begin{aligned} & 134(33.16 \%) \\ & 155(38.36) \\ & 103(25.49 \%) \\ & 12(3 \%) \end{aligned}$ | $\begin{aligned} & 95 \text { (32.3\%) } \\ & 112 \text { (37.83\%) } \\ & 77 \text { (26.01\%) } \\ & 12 \text { (4.05\%) } \end{aligned}$ | $\begin{array}{\|l} 39 \text { (36.11\%) } \\ 43 \text { (39.81\%) } \\ 26 \text { (24.07\%) } \\ 0(0 \%) \end{array}$ | $\begin{aligned} & 0.537 \\ & \text { NS } \end{aligned}$ |
| School level <br> Illiteracy <br> Coranic school/ Primary <br> Secondary level <br> Superior level | $\begin{aligned} & 78 \text { (19.30\%) } \\ & 122(30.19 \%) \\ & 117(29 \%) \\ & 87(21.53 \%) \end{aligned}$ | $\begin{aligned} & 56(18.91 \%) \\ & 82(27.70 \%) \\ & 93(31.41 \%) \\ & 65(22 \%) \end{aligned}$ | $\begin{aligned} & 22(20.37 \%) \\ & 40(37.03 \%) \\ & 24(22.22 \%) \\ & 22(20.37 \%) \end{aligned}$ | $\begin{aligned} & 0.235 \\ & \text { NS } \end{aligned}$ |
| Occupation <br> Without <br> Student <br> Liberal profession <br> Public profession <br> Retired <br> Homemaker | $\begin{array}{\|l} 53(13.11 \%) \\ 26(6.43 \%) \\ 51(12.62 \%) \\ 85(21.03 \%) \\ 15(3.71 \%) \\ 148(36.63 \%) \end{array}$ | $\begin{aligned} & 37(12.5 \%) \\ & 15(5.06 \%) \\ & 40(13.51 \%) \\ & 60(20.27 \%) \\ & 13(4.39 \%) \\ & 112(37.83 \%) \end{aligned}$ | $\begin{aligned} & 16(14.81 \%) \\ & 11(10.18 \%) \\ & 11(10.18 \%) \\ & 25(23.14 \%) \\ & 2(1.85 \%) \\ & 36(33.33 \%) \end{aligned}$ | NS 0.23 |
| Medical Cover <br> Without <br> AMO <br> RAMED <br> Other | $\begin{aligned} & 56(13.86 \%) \\ & 98(24.25 \% \\ & 248(61.38 \%) \\ & 2(0.49 \%) \end{aligned}$ | $\begin{aligned} & 43(16 \%) \\ & 73(24.66 \%) \\ & 178(60.13 \% \\ & 2(0.67 \%) \end{aligned}$ | $\begin{aligned} & 13(12.03 \%) \\ & 25(23.14 \%) \\ & 70(64.81 \%) \end{aligned}$ | NS |
| AMO :obligatory health insurance, RAMED:Medical insurance for the poor |  |  |  |  |



Figure 1. Prevalence of T2DM and hypertension in the province of Berkane between urban and rural areas.

Table 2: Clinical data of consultants

| Variables | total Number (\%)(n=404) | Urban ( $\mathrm{n}=296$ ) | Rural(n=108) | Pvalue |
| :---: | :---: | :---: | :---: | :---: |
| Self-reported medical history DT1 <br> DT2 <br> HT | $\begin{aligned} & 10(2.47 \%) \\ & 36(8.91 \%) \\ & 45(11.13 \%) \end{aligned}$ | $\begin{aligned} & 8(2.70 \%) \\ & 24(8.10 \%) \\ & 11(3.71 \%) \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { 2(1.85\%) } \\ & 12(11.11 \%) \\ & 34(31.48 \%) \end{aligned}$ | 0.052* |
| Newly diagnosed disease DT2 HT | $\begin{aligned} & \text { 49(12.12\%) } \\ & 22(5.44 \%) \end{aligned}$ | $\begin{aligned} & \text { 41(13.85\%) } \\ & \text { 12(4.46\%) } \end{aligned}$ | $\begin{aligned} & 8(7.40 \%) \\ & 10(9.25 \%) \end{aligned}$ | 0.052* |
| Family history Yes | 39(9.65\%) | 28(9.45\% | 11(10.18\% | NS |
| Fasting Glycemia (404) <br> Normal <br> Abnormal >1.26g <br> Hb1ac (86) <br> <7 <br> >7 | $\begin{aligned} & 318(78.71 \%) \\ & 85(21.28 \%) \\ & 21(24.41 \%) \\ & 64(74.41 \%) \end{aligned}$ | $\begin{aligned} & 244(82.43 \%) \\ & 50(16.89 \%) \\ & 09(10.46 \%) \\ & 47(54.65 \%) \end{aligned}$ | $\begin{aligned} & 74(68.51 \%) \\ & 36(33.33 \%) \\ & 13(15.11 \%) \\ & 17(19.76 \% \end{aligned}$ | $\begin{aligned} & 0.002^{*} \\ & 0.012^{*} \end{aligned}$ |
| $\begin{aligned} & \hline \text { BMI } \\ & <25 \\ & \text { Between [25-29,9] } \\ & >30 \end{aligned}$ | $\begin{array}{\|l} \hline 117(29 \%) \\ 161(39.85 \%) \\ 126(31.18 \%) \end{array}$ | $\begin{array}{\|l} 84(28.37 \%) \\ 123(41.55 \%) \\ 89(30.06 \%) \\ \hline \end{array}$ | $\begin{aligned} & 33(30.55 \%) \\ & 38(35.18 \%) \\ & 37(34.25 \%) \end{aligned}$ | 0.818 NS |
| Report TT/TH Normal Abnormal | $\begin{array}{\|l\|} \hline 158(39.10 \%) \\ 246(60.89 \%) \end{array}$ | $\begin{aligned} & 112(37.83 \%) \\ & 184(62.16 \%) \end{aligned}$ | $\begin{aligned} & 46(42.59 \%) \\ & 62(57.40 \%) \end{aligned}$ | 0.387 NS |
| $\begin{aligned} & \hline \text { SBP (Systolic pressure) } \\ & <14 \\ & >14 \end{aligned}$ | $\begin{array}{\|l\|} \hline 282(69.80 \%) \\ 122(30.2 \%) \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 213(79.18 \%) \\ 83(30.85 \%) \\ \hline \end{array}$ | $\begin{aligned} & 69(63.88 \%) \\ & 39(36.11 \%) \\ & \hline \end{aligned}$ | 0.118 NS |
| $\begin{aligned} & \text { DBP (Diastolic pressure) } \\ & <9 \\ & >9 \end{aligned}$ | $\begin{array}{\|l} 269(66.85 \%) \\ 135(33.41 \%) \end{array}$ | $\begin{array}{\|l} 206(76.57 \%) \\ 90(33.45 \%) \end{array}$ | $\begin{aligned} & 63(58.33 \%) \\ & 45(41.66 \%) \end{aligned}$ | 0.034* |



Figure 2. Prevalence of risk factors province of Berkane.

Table 3：Distribution of RDF by gender，age，residence，education and occupation

| Risque factors | Gender |  |  | Years |  |  |  |  | Residence |  |  | Scholar level |  |  |  |  | Profession |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | M | F | P | 1 | 2 | 3 | 4 | P | U | R | P | NS | Pri | Sec | Sup | P | SS | FF | Fonct | Retr | Etud | P |
| Overweight（161） <br> Obesity（126）31．\％ | $\begin{aligned} & 61 \\ & 19 \end{aligned}$ | $\begin{aligned} & 100 \\ & 107 \end{aligned}$ |  | $\begin{aligned} & 54 \\ & 45 \end{aligned}$ | $\begin{aligned} & 65 \\ & 48 \end{aligned}$ | $\begin{aligned} & 37 \\ & 32 \end{aligned}$ | $\begin{aligned} & 5 \\ & 2 \\ & \hline \end{aligned}$ | ત్రీ | $\begin{array}{\|l\|l} 123 \\ 89 \end{array}$ | $\begin{array}{\|l\|l} 38 \\ 37 \end{array}$ | NS | $\begin{array}{\|l} 25 \\ 33 \end{array}$ | $\begin{aligned} & 44 \\ & 38 \end{aligned}$ | $\begin{aligned} & 50 \\ & 35 \end{aligned}$ | $\begin{array}{\|l} 42 \\ 12 \end{array}$ | $\begin{aligned} & \text { 善 } \\ & \stackrel{\rightharpoonup}{\circ} \\ & 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & 16 \\ & 15 \end{aligned}$ | $\begin{aligned} & 56 \\ & 56 \end{aligned}$ | $\begin{aligned} & 74 \\ & 50 \end{aligned}$ | $\begin{array}{\|l} 8 \\ 2 \end{array}$ | $\left\lvert\, \begin{aligned} & 5 \\ & 2 \end{aligned}\right.$ | NS |
| AbdominalObesity （246） | 66 | 180 |  | 89 | 95 | 60 | 6 | 冗 | 184 | 62 | NS | 48 | 74 | 73 | 51 | \％ | 26 | 96 | 101 | 8 | 0 | NS |
| Sédentarity <br> High（33） <br> Medium（199） <br> Low（150） <br> Active（22） | $\begin{array}{\|l} 05 \\ 82 \\ 53 \\ 07 \\ \hline \end{array}$ | $\begin{array}{\|l} 28 \\ 117 \\ 97 \\ 15 \\ \hline \end{array}$ | $\stackrel{\stackrel{4}{n} /}{\stackrel{\circ}{0}}$ | $\begin{aligned} & 27 \\ & 75 \\ & 21 \\ & 11 \\ & \hline \end{aligned}$ | $\begin{array}{\|l} 13 \\ 76 \\ 57 \\ 09 \\ \hline \end{array}$ | $\begin{array}{\|l} 07 \\ 57 \\ 37 \\ 02 \\ \hline \end{array}$ | $\begin{array}{\|l} 02 \\ 01 \\ 09 \\ 00 \\ \hline \end{array}$ | \％ | $\begin{array}{\|l\|} \hline 24 \\ 143 \\ 111 \\ 18 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 09 \\ 56 \\ 39 \\ 04 \\ \hline \end{array}$ | NS | $\begin{array}{\|l} 07 \\ 37 \\ 32 \\ 04 \\ \hline \end{array}$ | $\begin{array}{\|l} 12 \\ 62 \\ 44 \\ 04 \\ \hline \end{array}$ | $\begin{array}{\|l} 07 \\ 57 \\ 45 \\ 08 \\ \hline \end{array}$ | $\begin{array}{\|l} 07 \\ 45 \\ 29 \\ 00 \\ \hline \end{array}$ | Z | $\begin{aligned} & 05 \\ & 23 \\ & 14 \\ & 06 \\ & \hline \end{aligned}$ | $\begin{aligned} & 16 \\ & 85 \\ & 42 \\ & 05 \\ & \hline \end{aligned}$ | $\begin{array}{\|l} 08 \\ 68 \\ 59 \\ 05 \\ \hline \end{array}$ | $\begin{aligned} & 03 \\ & 05 \\ & 06 \\ & 01 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 01 \\ 09 \\ 12 \\ 04 \\ \hline \end{array}$ | NS |
| PA <br> Low（217） <br> Medium（82） <br> High（89） <br> Very high（16） | $\begin{array}{\|l} 47 \\ 31 \\ 27 \\ 11 \\ \hline \end{array}$ | $\begin{array}{\|l} 170 \\ 51 \\ 62 \\ 05 \\ \hline \end{array}$ | $\begin{aligned} & \text { wi. } \\ & \stackrel{0}{\circ} \\ & 0 . \end{aligned}$ | $\begin{aligned} & 78 \\ & 30 \\ & 20 \\ & 06 \\ & \hline \end{aligned}$ | $\begin{aligned} & 102 \\ & 24 \\ & 25 \\ & 04 \\ & \hline \end{aligned}$ | $\begin{array}{\|l} 65 \\ 19 \\ 13 \\ 06 \\ \hline \end{array}$ |  | Z | 229 <br> 32 <br> 25 <br> 10 | $\begin{array}{\|l} 86 \\ 08 \\ 12 \\ 02 \\ \hline \end{array}$ | NS | $\begin{array}{\|l} 46 \\ 17 \\ 14 \\ 01 \\ \hline \end{array}$ | $\begin{array}{\|l} 83 \\ 21 \\ 13 \\ 05 \\ \hline \end{array}$ | $\begin{aligned} & 67 \\ & 27 \\ & 17 \\ & 06 \\ & \hline \end{aligned}$ | $\begin{array}{\|l} 37 \\ 19 \\ 23 \\ 05 \\ \hline \end{array}$ | $\begin{aligned} & \text { 善 } \\ & \stackrel{0}{8} \\ & 0 . \\ & \hline \end{aligned}$ | $\begin{array}{\|l} 27 \\ 08 \\ 11 \\ 01 \\ \hline \end{array}$ | $\begin{array}{\|l} \hline 113 \\ 19 \\ 13 \\ 02 \\ \hline \end{array}$ | $\begin{array}{\|l} 84 \\ 47 \\ 19 \\ 12 \\ \hline \end{array}$ | $\begin{array}{\|l} 07 \\ 04 \\ 03 \\ 01 \\ \hline \end{array}$ | $\begin{array}{\|l\|l} 15 \\ 03 \\ 08 \\ 00 \\ \hline \end{array}$ | NS |
| Stress（psycho） <br> Little（95） <br> Medium（118） <br> High（127） <br> Very high（64） | $\begin{array}{\|l} 33 \\ 36 \\ 33 \\ 14 \\ \hline \end{array}$ | $\begin{aligned} & 62 \\ & 82 \\ & 94 \\ & 50 \\ & \hline \end{aligned}$ | $\begin{aligned} & \stackrel{*}{3} \\ & \stackrel{U}{0} \end{aligned}$ | $\begin{aligned} & 35 \\ & 39 \\ & 44 \\ & 23 \\ & \hline \end{aligned}$ | $\begin{array}{\|l} 34 \\ 49 \\ 48 \\ 24 \\ \hline \end{array}$ | $\begin{array}{\|l} 27 \\ 29 \\ 34 \\ 13 \\ \hline \end{array}$ | $\begin{aligned} & 06 \\ & 02 \\ & 04 \\ & 00 \\ & \hline \end{aligned}$ | 亿 | $\begin{array}{\|l\|l\|} \hline 114 \\ 91 \\ 90 \\ 01 \\ \hline \end{array}$ | $\begin{aligned} & 45 \\ & 27 \\ & 36 \\ & 00 \\ & \hline \end{aligned}$ | NS | $\begin{array}{\|l} 23 \\ 33 \\ 10 \\ 12 \\ \hline \end{array}$ | $\begin{array}{\|l} 25 \\ 39 \\ 39 \\ 19 \\ \hline \end{array}$ | $\begin{array}{\|l} 21 \\ 42 \\ 41 \\ 13 \\ \hline \end{array}$ | $\begin{array}{\|l} 27 \\ 18 \\ 27 \\ 15 \\ \hline \end{array}$ | Z | $\begin{array}{\|l} 20 \\ 19 \\ 10 \\ 04 \\ \hline \end{array}$ | $\begin{aligned} & 30 \\ & 52 \\ & 34 \\ & 32 \\ & \hline \end{aligned}$ | $\begin{array}{\|l} 37 \\ 43 \\ 63 \\ 19 \\ \hline \end{array}$ | $\begin{aligned} & 04 \\ & 03 \\ & 07 \\ & 01 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|l} 03 \\ 05 \\ 12 \\ 06 \\ \hline \end{array}$ | NS |
| Tabacco <br> Yes（28） <br> No <br> Ex smoker（21） | $\begin{aligned} & 27 \\ & 74 \\ & 15 \end{aligned}$ | $\begin{aligned} & 01 \\ & 281 \\ & 06 \end{aligned}$ | $\begin{aligned} & \text { 善 } \\ & \stackrel{\circ}{8} \\ & \circ \end{aligned}$ | $\begin{aligned} & 06 \\ & 124 \\ & 04 \end{aligned}$ | $\begin{aligned} & 10 \\ & 135 \\ & 10 \\ & \hline \end{aligned}$ | $\begin{array}{\|l} 05 \\ 91 \\ 07 \\ \hline \end{array}$ | $\begin{array}{\|l} 07 \\ 05 \\ 00 \\ \hline \end{array}$ | \％ | $\begin{aligned} & 19 \\ & 262 \\ & 15 \end{aligned}$ | $\begin{aligned} & 02 \\ & 100 \\ & 06 \end{aligned}$ | NS | $\begin{array}{\|l\|} 01 \\ 69 \\ 08 \\ \hline \end{array}$ | $\begin{aligned} & 03 \\ & 112 \\ & 07 \end{aligned}$ | $\begin{aligned} & 13 \\ & 101 \\ & 03 \end{aligned}$ | $\begin{aligned} & 03 \\ & 73 \\ & 11 \end{aligned}$ | $\begin{aligned} & \text { 善 } \\ & 8 \\ & 0 \\ & \hline 0 \end{aligned}$ | $\begin{aligned} & 03 \\ & 46 \\ & 04 \end{aligned}$ |  | $\begin{aligned} & 12 \\ & 140 \\ & 10 \end{aligned}$ | $\begin{array}{\|l} 02 \\ 06 \\ 07 \\ \hline \end{array}$ | 07 | NS |
| Alcohol Yes（10） No Ex alcoholic（10） | $\begin{aligned} & 10 \\ & 97 \\ & 09 \\ & \hline \end{aligned}$ | $\begin{aligned} & 0 \\ & 287 \\ & 01 \end{aligned}$ | $\begin{aligned} & \stackrel{.}{*} \\ & \stackrel{\rightharpoonup}{8} \\ & 8 \\ & \hline 0 \end{aligned}$ | $\begin{aligned} & 04 \\ & 127 \\ & 03 \end{aligned}$ | $\begin{aligned} & 01 \\ & 152 \\ & 02 \\ & \hline \end{aligned}$ | $\begin{aligned} & 05 \\ & 98 \\ & 05 \\ & \hline \end{aligned}$ | $\begin{array}{\|l\|} \hline 0 \\ 12 \\ 00 \\ \hline \end{array}$ | \％ | $\begin{aligned} & 02 \\ & 07 \end{aligned}$ | $\begin{array}{\|l} 08 \\ 03 \end{array}$ | NS | $\begin{array}{\|l\|} \hline 04 \\ 78 \\ 0 \end{array}$ | $\begin{aligned} & 01 \\ & 118 \\ & 2 \end{aligned}$ | $\begin{aligned} & 03 \\ & 08 \end{aligned}$ | $\begin{aligned} & 02 \\ & 82 \\ & 00 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 0 \\ & 52 \\ & 01 \end{aligned}$ | $\begin{aligned} & 08 \\ & 0 \end{aligned}$ | $\begin{aligned} & 02 \\ & 09 \end{aligned}$ | $\begin{array}{\|l} \hline 0 \\ 13 \\ 00 \\ \hline \end{array}$ | 0 | NS |

Physical inactivity was the first factor that prevailed， it represented $74 \%$ of our surveys with a female pre－ dominance（78．34\％）whose relationship was highly significant $\mathrm{p}=0.0001$ ．According to the level，between $20.3 \%$ and $53.71 \%$ of the consultants exercised a mod－ erate to low intensity PA，while only between $4 \%$ and $22 \%$ pursued a very high－to－highintensity PA（Figure 3）．The multivariate analyses show that these results do not seem to be modified by age，place of residence，or occupation，while a significant association was found between this parameter and the level of education with a $p$ value $=0.0001$ ．

Abdominal obesity was in second place in the cohort as a whole with a higher prevalence of $61 \%$ ，with a small difference between male and female， $62.5 \%$ vs． $57 \% ~(p=0.048)$ ，and with no difference for other socio－ demographic parameters．

Sedentary lifestyle：A hight sedentary lifestyle was detected in $8.16 \%$ of our population，while about half （ $49.25 \%$ ）had a medium level of sedentary lifestyle， against $5.44 \%$ to $37.12 \%$ their level of sedentary life－ style oscillates between very low and low（Figure 3）．


Figure 3．Prevalence of PA and sedentarity in province of Berkane

The female sex was more concerned by this event than the male sex with a $p$-value $=0.015$, the large proportion of unemployed homemakers ( 96 women) in our population can explain this result.

Weight status: The average BMI of the participants was $28.1 \pm 3.7 \mathrm{~kg} / \mathrm{m}^{2}$, about $40 \%$ were overweight and $31 \%$ were obese according to the World Health Organization classification. In contrast to the other RFs, weight status correlated with all parameters except residence; sex $\mathrm{p}=0.0001$, age $\mathrm{p}=0.022$, school level $\mathrm{p}=0.0001$, and occupation 0.0001 .

Stress (psychological): According to the data in Table 3, between $31.43 \%$ and $15.84 \%$ of our population stated that they had been exposed to stress ranging from high to very high levels, however, more than half $53 \%$ experienced little or moderate stress in their daily lives. This factor does not seem to have any relationship with the different sociodemographic parameters.

Smoking: Participants who reported smoking were approximately about $7 \%$ and $3.46 \%$ were former smokers. Smoking status was highly correlated with gender and occupation, with $\mathrm{p}=0.0001$.

Alcohol use: For alcohol status, only $2.47 \%$ reported current alcohol use and $2.47 \%$ were former drinkers.

## D. Risk factors by disease type:

Binary regression between the presence of T2D/HT and risk factors showed the following results: (Table 4).

On the one hand, T2DM was significantly associated with certain non-modifiable risk factors, such as age ( 0.0001 ) and place of residence ( $\mathrm{p}=0.003$ ). On the other hand, no association was found between this pathology and gender, family history, level of education, and occupation. A diabetic has a five times risk of being hypertensive with $p=0.0001$ and an (Relative Risk) RR 5.654 [2.962-10.792].

On the other hand, type 2 diabetes is associated with modifiable risk factors such as: $\mathrm{BMI}>30 \mathrm{p}=0.014$ with a risk ratio of 2.464 [1.251-2.857] and a highly significant association with abdominal obesity with $\mathrm{p}=0.0001$, risk ratio of 2.136 [2.046-3.290].

Regarding hypertension, the modifiable risk factors with which it is significantly associated are: overweight $\mathrm{p}=0.004$ and odds ratio 1.280 [1.116-1.673], and obesity $\mathrm{p}=0.006$ OR 1.327 [1.148-3.723], also waist circumference and highly significant with hypertension $\mathrm{p}=0.0001$ odds ratio 2.136 [2.046-4.290].

On the other hand, hypertension was not associated with sex, place of residence, and occupation, whereas it
was significantly associated with age $\mathrm{p}=0.0001$, family history 0.004 , and educational level $\mathrm{p}=0.027$.

## DISCUSSION

Few studies have focused on the study of environmental RF in the eastern region, to our knowledge; our study is the first of its kind conducted in the province of Berkane.

## A. Risk factors in the general population:

Our results indicate that physical inactivity was the dominant risk factor in our cohort with $74 \%$, female gender was the most concerned with $78.34 \%$, but no significant relationship between residence, age, or educational level was detected. This result is close to those announced by the (World Health Organisation) WHO, which states that $60 \%$ of the world's population does not manage to maintain an activity at the recommended level ${ }^{16}$. However, these results are higher than the data reported in the (National Institute of food safety) INCA3 study, which showed that $45 \%$ of men and $55 \%$ of women were inactive ${ }^{17}$. According to Loyenand al, if objective measurements of PA are taken (accelerometers) it is more like $70 \%$ of adults are inactive ${ }^{18}$.

The first result of physical inactivity is excess weight, particularly visceral adiposity, it represents $61 \%$ of our sample, and i.e. six adults out of 10 have abdominal obesity, of which the majority is attributed to the female sex (64\%). This prevalence is lower than that found in women in the region of Meknes and the eastern region (Oujda) in Morocco with respectively 98\% and $79.1 \%$ of patients with abdominal obesity ${ }^{19,20}$.

In addition, several studies have reported a high prevalence of obesity in women compared to men in both urban and rural areas ${ }^{21}$, this can be explained in large part by certain events in women's lives (childbirth, menopause) that could promote the development of obesity ${ }^{21}$. Indeed, our population was composed of more at-risk subjects such as women ( $71.28 \%$ ), unemployed and therefore often sedentary subjects (13.61\%).

Sedentary times were also high, as about $57.42 \%$ had between high and medium sedentary times. The latter would be responsible for $8 \%$ of premature death per hour spent in a sitting position beyond 8 hours/day. It is associated with all causes of mortality and specific morbidity: cardiovascular mortality with an incidence of between 1.95 and 5.32; incidence of cancer between

Saliha MHARCHI et al.

Table 4: risk factors according to each pathology T2DM and hypertension.

| Modifiable risque factor | DT 2 ( $\mathrm{n}=85$ ) |  |  | HT ( $\mathrm{n}=67$ ) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Yes | P value | OR IC95\% | Yes | P value | OR IC95\% |
| Gender M W | $\begin{aligned} & 31(36.47 \%) \\ & 54(63.5 \%) \end{aligned}$ | 0.17 NS | $\begin{aligned} & 2.416[1.858- \\ & 2.336] \end{aligned}$ | $\begin{aligned} & 45(67.16 \%) \\ & 22(32.83 \%) \end{aligned}$ | 0.502 NS | $\begin{aligned} & 0.783[0.382- \\ & 1.603] \end{aligned}$ |
| $\left\lvert\, \begin{aligned} & \text { Years } \\ & 18-33 \\ & 34-49 \\ & 50-65 \\ & >66 \end{aligned}\right.$ | $\begin{aligned} & \text { 17(20\% } \\ & 28(32.94 \% \\ & 37(43.52 \% \\ & 7(8.23 \% \end{aligned}$ | 0.000** | Chi2 32.661 | $\begin{aligned} & 4(5.98 \%) \\ & 11(16.41 \%) \\ & 34(50.74 \%) \\ & 18(26.86 \%) \end{aligned}$ | 0.0001** | X ${ }^{2} 63.980$ |
| Residence <br> Urbain <br> Rural | $\begin{aligned} & 50(58.82 \%) \\ & 35(41.17 \%) \end{aligned}$ | 0.003* | NA | $\begin{aligned} & 45(67.16 \%) \\ & 22(32.83 \%) \end{aligned}$ | $\begin{array}{\|l} 0.71 \\ \mathrm{NS} \end{array}$ | $\begin{aligned} & 0.874[0.426- \\ & 1.793] \end{aligned}$ |
| Family History Yes | 25(29.41\%) | $\begin{array}{\|l\|} \hline \text { NS } \\ 0.185 \end{array}$ | $\begin{aligned} & 1.732[0.766- \\ & 3.913] \end{aligned}$ | 15(22.38\%) | 0.004* |  |
| Level school Illiteracy/primary Secondary/superior | $\begin{array}{\|l} 46(54.11 \% \\ 39(45.88 \% \end{array}$ | NS | X ${ }^{2} 5.048$ | $\begin{aligned} & 42(62.68 \% \\ & 25(37.31 \% \end{aligned}$ | 0.027* | $\mathrm{X}^{2} 9.173$ |
| BMI <br> Normal overweight obesity | $\begin{aligned} & 22(25.88 \% \\ & 23(27.05 \% \\ & 40(47.05 \% \end{aligned}$ | $\begin{aligned} & 1 \\ & 0.207 \\ & 0.014^{*} \end{aligned}$ | $\begin{array}{\|l} 1 \\ 1.650[1.334- \\ 2.268] \\ 2.464[1.251- \\ 2.857] \end{array}$ | $\begin{aligned} & 11(16.41 \% \\ & 17(25.37 \% \\ & 25(37.31 \% \end{aligned}$ | $\begin{array}{\|l} 1 \\ 0.004^{*} \\ 0.006^{*} \end{array}$ | $\begin{aligned} & 1.280[1.116- \\ & 1.673] \\ & 1.327[1.148- \\ & 3.723] \end{aligned}$ |
| TT/TH <br> Normal Abnormal | $\begin{aligned} & 45(52.94 \% \\ & 40(47.05 \% \end{aligned}$ | $\begin{array}{\|l\|} \hline 1 \\ 0.0001 * * * \end{array}$ | $\begin{aligned} & 2.136[2.046- \\ & 3.290] \end{aligned}$ | $\begin{aligned} & 45(67.16 \%) \\ & 22(32.83 \%) \end{aligned}$ | $\begin{array}{\|l\|} 1 \\ 0.0001^{* *} \end{array}$ | $\begin{aligned} & 2.136[2.046- \\ & 4.290] \end{aligned}$ |
| $\begin{aligned} & \mathrm{HT} \\ & \mathrm{Yes} \end{aligned}$ | 65(76.47\% | 0.0001** | $\begin{array}{\|l} \mathrm{RR} \\ 5.654[2.962- \\ 10.792] \end{array}$ | 25(32.83\% | 0.0001** | $\begin{aligned} & \mathrm{RR} \\ & 5.654[2.962- \\ & 10.792] \end{aligned}$ |
| PA <br> Never/Sometimes Often/Always | $\begin{aligned} & 76(89.41 \%) \\ & 9(10.58 \%) \end{aligned}$ | NS | [0.122-0.103] | $\begin{aligned} & 52(77.61 \% \\ & 15(22.38 \% \end{aligned}$ | $\begin{array}{\|l} 0.165 \\ \text { NS } \end{array}$ | $\mathrm{X}^{2} 5.091$ |
| Sedentarily V high/High Medium/ Low | $\begin{array}{\|l\|} 54(63.52) \\ 31(36.47) \end{array}$ | NS | NA | $\begin{array}{\|l} 39(58.20 \\ 28(41.79) \end{array}$ | NS |  |
| Tabacco <br> No <br> Yes <br> ex | $\begin{aligned} & 74(87.05 \% \\ & 5(5.88 \% \\ & 6(7.05 \% \end{aligned}$ | $\begin{array}{\|l\|l} \text { NS } \\ 0.836 \end{array}$ | $\begin{aligned} & 1.173[0.351- \\ & 3.618] \end{aligned}$ | $\begin{aligned} & 53(79.10 \% \\ & 0 \\ & 14(20.89 \% \end{aligned}$ | $\begin{array}{\|l\|} \text { NS } \\ 0.803 \end{array}$ | $\begin{aligned} & 0.609[0.141- \\ & 2.640] \end{aligned}$ |
| Alcohol <br> No <br> Yes <br> ex | $\begin{aligned} & 77(90.85 \% \\ & 2(2.35 \% \\ & 6(7.05 \% \end{aligned}$ | $\begin{array}{\|l\|} \mathrm{NS} \\ 0.202 \end{array}$ | $\begin{aligned} & 0.336[0.089- \\ & 1.273] \end{aligned}$ | $\begin{aligned} & 55(82.08 \% \\ & 0 \\ & 12(17.9 \%) \end{aligned}$ | $\begin{aligned} & \text { NS } \\ & 0.635 \end{aligned}$ | $\begin{aligned} & 1.792[0.161- \\ & 19.915] \end{aligned}$ |

1.33 and 3.67; incidence of death from type 2 diabetes between 1.77 and $2.87^{22}$.

The most recent meta-analysis included six cohort studies that used accelerometers (33 386 subjects). It showed that mortality increased gradually from 9 hours of sedentary time per day, with an increased risk of overall mortality of $48 \%$ for $10 \mathrm{~h} / \mathrm{d}$ (IC95\%: 1,221,79 ) and multiplied by 2.92 ( $95 \% \mathrm{CI}$ : 2.24-3.83) for $12 \mathrm{~h} / \mathrm{d}$ sitting (multivariate analysis) ${ }^{17}$.

Overweight and general obesity represent respectively $40 \%$ and $31 \%$ in our study population, similar results to some recent surveys that revealed that in Kuwait, $48 \%$ of women and $36 \%$ of men were obese, while $77 \%$ of women and $74 \%$ of men were overweight. In Saudi Arabia, $44 \%$ of the female and $28 \%$ of the male were obese. However, $71 \%$ of women and $66 \%$ of men are reported to be overweight ${ }^{23}$. With regard to gender distribution, women have been disproportionately affected by extreme obesity compared with men, a fending that has been supported by another research ${ }^{23}$. Therefore, the increase in age was clearly significantly associated with overweight, obesity $\mathrm{p}=0.022$, large population studies indicate that BMI increases progressively during adult life, peaking at [50-59] years of age in men as well as women, showing a decreasing trend in BMI after age 60 years ${ }^{23}$.

Education level was identified as a significant predictor of obesity, which is likely to be the case in Greek and American populations where the risk of being obese was lower in educated women than in illiterate ones ${ }^{23}$ unlike the Japanese and Lebanese, where less educated people had a high $\mathrm{BMI}^{23}$.

Similarly, our study showed that the prevalence of stress was $47 \%$. This (psychological) factor is responsible for biological changes related to the alteration of health status as it has been documented in scientific research worksc ${ }^{24}$.

These risk factors are responsible for the increased prevalence of hypertension and T2D:

The first investigations of the study (Table 2) showed, first, a prevalence of T2DM of $21 \%$, which far exceeds the estimates recorded at the national level of $10.6 \%{ }^{2}$. and at the regional level of $6.6 \%$ in the prefecture of Oujda and $6.7 \%$ in the city of Rabat ${ }^{20}$.

Among these diabetics, there was a rate of undiagnosed diabetes equivalent to $12.12 \%$, a result similar to that of the survey conducted in the two regions of Grand Casa and Rabat $12.8 \%{ }^{25}$. In contrast, it was $4.3 \%$ among U.S. adults in a survey conducted between 2013-2016 ${ }^{26}$.

Also, the prevalence of hypertension in our sample was $16.57 \%$ of which $5.44 \%$ was undiagnosed. This value is lower than the rates collected in some regions of Morocco; in Rabat, it is $25 \%$, in the prefecture of Oujda it was $35 \%^{20}$, then in Maghreb countries, such as Algeria $36.2 \%$ and Tunisia $31 \%^{20}$. Despite these high values, the rates recorded in developing countries remain lower compared to developed countries ( $38 \%$ in Italy, $45 \%$ in Spain, $31 \%$ in France $)^{20}$.

When diabetics and hypertensive patients were crossed with modifiable RF (Table 4), we found that the proportion of diabetic individuals was positively and significantly associated with overweight: either general or visceral, so that an obese person has twice the risk of being diabetic than a person with a normal weight (Odds Ratio) OR=2.464 [1.251-2.857]. This relationship has been widely documented in the literature, highlighting the role of BMI in the etiology of cardiovascular disease (CVD) ${ }^{23}$. It is a modifiable and preventable risk factor for insulin resistance resulting in impaired glucose tolerance that favors the development of diabetes with a $\mathrm{BMI} \geq 35 \mathrm{Kg} / \mathrm{m}^{2} .{ }^{23}$

In addition, abdominal obesity was found to be associated with diabetes status (50\%) Table 4. The results showed a highly significant relationship at $1 \%$ $\mathrm{P}<0.0001$, an OR: 2.136 [2.046-3.290] the relative risk of having diabetes was 2 times higher in people with visceral obesity. Pathophysiological, T2DM is a disease intimately associated with abdominal adiposity that aggravates insulin resistance and low-grade inflammation ${ }^{27}$.

Also, the prevalence of hypertension increases with weight gain in our study using the WHO cutoff value. In previous studies, increased blood pressure has been shown to be associated with weight gain, and an estimated $60 \%$ to $70 \%$ of adults with hypertension are related to adiposity ${ }^{28}$.

## CONCLUSION:

In conclusion, our results show an alarming prevalence of T2DM and hypertension. The risk factors were similarly present in urban and rural areas, suggesting a possible transition that will become more pronounced in the coming years.

In general, physical inactivity, obesity and overweight appear to be the main determinants and modifiable factors in the province of Berkane in eastern Morocco, particularly among women. There is there-
fore an urgent need to introduce prevention programs based on awareness-raising, health education and early diagnosis in order to reduce the burden of these diseases.

## Perspectives and limits:

In this article, we have only presented some risk factors, planning to publish other articles later on that detail the nutritional status, the adherence to the Mediterranean diet.

## Declaration of interest

The authors declare that they have no ties of interest. They are solely responsible for the writing and content of this article.

## Acknowledgements

We express our thanks to all the health professionals of the health centers who helped us to carry out this study, but also to the officials of the regional health directorate on behalf of the regional director and the delegate of the province of Berkane. Our gratitude goes to the people who participated in the data collection.

## References

1. Bennett, J.E., Kontis, V., Mathers, C., Guillot, M., Rehm, J., Chalkidou, K., \& Ezzati, M. NCD Countdown 2030: pathways to achieving Sustainable Development Goal target 3.4. The Lancet, 2020. 396(10255): p. 918-934.doi:10.1016/s0140-6736(20)31761-x
2. Ministry, Morocco.Health., National Population and Family Health Survey NPFHS 2018.Ministry of Health Morocco.
3. Bennett, J.E., Stevens, G., Mathers, C., Bonita, R., Rehm, J., Kruk, M., \& Ezzati, M. NCD Countdown 2030: worldwide trends in non-communicable disease mortality and progress towards Sustainable Development Goal target 3.4. The Lancet, 2018. 392(10152): p. 1072-1088
4. Forouzanfar, M.H., Afshin, A., Alexander, L. T., Anderson, H. R., Bhutta, Z. A., Biryukov, S., \& Carrero, J. J. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. The lancet, 2016. 388(10053): p. 16591724. doi:10.1016/s0140-6736(16)31679-8
5. WHO, Non-communicable diseases [Internet]. Geneva (2018). Available online at: https://www.who.int/en/news-room/fact-sheets/detail/noncommunicable-diseases (accessed May 27, 2022).
6. Abboud, M. and S. Karam, Hypertension in the Middle East: current state, human factors, and barriers to control. Journal of human hypertension, 2022. 36(5): p. 428-436.
7. International Diabetes Federation (IDF) Diabetes Atlas (Atlas de la FID-10e edition). 2021.
8. WHO, Noncommunicable diseases country profiles 2018. Geneva: World Health Organization.
9. Mharchi, S. and Maamri, A. Prevalence and risk factors for diabetic complications: 8-year retrospective report from a single regional
diabetes center to the eastern region of Morocco. Medicina Moderna, 2022. 29 (1): p. 75-87, https://doi.org/10.31689/ rmm.2021.29.1.75
10. HCP (Hight commissarit of Planning), Monographie de la province de Berkane. 2017.
11. Americain Diabetes Association (ADA). (2018). 6. Glycemic targets: standards of medical care in diabetes-2018. Diabetes Care, 41(Suppl 1), S55-S64.
12. International diabetes Federation (IDF). The IDF consensus worldwide definition of the metabolic syndrome. 2006: Retrieved from http://www.idf.org/webdata/docs/metabolicsyndrome-definition.pdf.accessed.
13. Chobanian, A.V., Bakris, G. L., Black, H. R., Cushman, W. C., Green, L. A., Izzo Jr, J. L., Wright Jr, J. T. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood PressureThe JNC 7 Report. JAMA, 2003. 289(19): p. 2560-2571.
14. Bigard, X., Physical activity, sedentary lifestyle, and non-communicable diseases. Health risk assessment. Bulletin de l'Académie Nationale de Médecine, 2019. 203(7): p. 603-612. doi:https://doi. org/10.1016/j.banm.2019.05.019
15. Bellinghausen, L. and Vaillant N.G., Determinants of perceived occupational stress: an estimation using the generalized estimating equations method. Économie \& prévision, 2010. 195196(4): p. 67-82.
16. Kerekou, A., Azon-Kouanou, A., Bocovo, M., Amoussou-Guenou, D., Drolo, F., \& Houinato, D. Prevalence survey of physical inactivity in outpatient medicine at the CNHU/HKM of Cotonou. Médecine d'Afrique noire, 2014. 61(12): p. 592-596.
17. Duclos, M.,Epidemiology and effects on morbidity and mortality of physical activity and sedentary lifestyle in the general population.

Revue du Rhumatisme Monographies, 2021. 88(3): p. 177-182. doi:https://doi.org/10.1016/j.monrhu.2020.11.008
18. Loyen, A., Van Hecke, L., Verloigne, M., Hendriksen, I., Lakerveld, J., Steene-Johannessen, J., Ekelund, U. Variation in population levels of physical activity in European adults according to cross-European studies: a systematic literature review within DEDIPAC. International Journal of Behavioral Nutrition and Physical Activity, 2016. 13(1): p. 1-18.
19. El Boukhrissi, F., Bamou.Y, Ouleghzal.H, Saf.Si, Balouch.L, Prevalence of risk factors for cardiovascular disease and metabolic syndrome among women in the Meknes region, Morocco. Medicine of Metabolic Diseases. 2017 Vol. 11 (2):P.188-194. https:// doi.org/10.1016/S19572557(17)300470.
20. Diaconu, C. C., \& Dediu, G. (2016). Obesity-related comorbidities: one actress, multiple scenes. Medicina Moderna, 23(1), 12-15.
21. Malik, K.S. and Adoubi, K.A. Obesity, hypertension, and physical activity levels in a black African population. Annales de Cardiologie et d'Angéiologie, 2019. 68(3): p. 133-138. doi:https://doi. org/10.1016/j.ancard.2018.08.017
22. Fouquet, B. and Jaume-Guichard,P. Physical activity, sedentary lifestyle, comorbidities and osteoarthritis. Revue du Rhumatisme Monographies, 2021. 88(3): p. 194-202. doi:https://doi. org/10.1016/j.monrhu.2021.03.005
23. Al-Ghamdi, S.,Shubair, M. M., Aldiab, A., Al-Zahrani, J. M., Aldossari, K. K., Househ, M., El-Metwally, A. Prevalence of overweight and obesity based on the body mass index; a cross-sectional
study in Alkharj, Saudi Arabia. Lipids in Health and Disease, 2018. 17(1): p. 134. doi:10.1186/s12944-018-0778-5.
24. Daryl B. O'Connor, Julian F. Thayer, and K. Vedhara, Stress and Health: A Review of Psychobiological Processes. Annual Review of Psychology, 2021. 72(1): p. 663-688.
25. Mouzouni, F.-Z.,Mehdad, S., Mounach, S., Iraqi, H., Benkirane, H., Benaich, S., Aguenaou, H. Diabetes prevalence is associated with obesity, hypertension, dyslipidemia, and sociodemographic factors in adults living in Casablanca-Settat and Rabat-Sale-Kenitra regions, Morocco. International Journal of Diabetes in Developing Countries, 2021. doi:10.1007/s13410-021-01006-7.
26. Dorobantu, M., Onciul, S., Darabont, et al. Arterial hypertension epidemiology: Romania among the balkan countries-data from SEPHAR Surveys. Medicina Moderna, 2014. 21(1): p.10-16.
27. Mendola ND,Chen TC, Gu Q, Eberhardt MS, \& S., S. Prevalence of total, diagnosed and undiagnosed diabetes among adults: United States, 2013-2016. NCHS Data Brief, n³19. Hyattsville, MD : National Center for Health Statistics. , 2018.
28. Scheen, A.J., Anti-obesity drugs: lessons from failures for the future. Médecine des Maladies Métaboliques, 2021. 15(8): p. 734-743. doi:https://doi.org/10.1016/j.mmm.2021.10.012.
29. Nurdiantami, Y., Watanabe, K., Tanaka, E., Pradono, J., \& Anme, T. Association of general and central obesity with hypertension. Clinical Nutrition, 2018. 37(4): p. 1259-1263. doi:https://doi. org/10.1016/j.clnu.2017.05.012


[^0]:    ${ }^{1}$ Water, Environment \& Health team, LAPABE laboratory, Faculty of Science, Mohammed First University, Oujda.

