CASE REPORT

Functional Amenorrhea and Pituitary Microadenoma

Dan Nicolae PADURARU1,2, Alexandra ENE3, Andra MORAR4, Cristina MOLDOVAN3, Alexandra BOLOCAN1,2, Oana BOTEZAN3, Octavian ANDRONIC1,2, Bogdan SOCEA2,7, Roxana TURTUREA3, Mara CARSO T5, Ana VALEA3,6

1 IIIrd Department of General Surgery and Emergency, Emergency University Hospital, Bucharest, Romania
2 „Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
3 County Clinical Hospital, Cluj-Napoca, Romania
4 Clinical Hospital of Infectious Diseases, Cluj-Napoca, Romania
5 „C.I. Parhon” National Institute of Endocrinology, Bucharest, Romania
6 „Iuliu Hatieganu” University of Medicine and Pharmacy & County Clinical Hospital, Cluj-Napoca, Romania
7 „Sf. Pantelimon” Clinical Emergency Hospital, Bucharest, Romania

Corresponding author: Mara CARSO T5, „C.I. Parhon” National Institute of Endocrinology, Bucharest, Romania.
E-mail: carsote_m@hotmail.com

Abstract

Introduction: Functional hypothalamic amenorrhea is a diagnostic challenge, especially in association with structural pituitary changes. We present the case of a patient with functional amenorrhea and pituitary microadenoma, evaluated in multiple medical centres. Case report: A 27-year-old female was referred to our clinic for secondary amenorrhea installed 18 months prior, insomnia, polydipsia (around 4-6 l water intake/day) and polyuria. Clinical examination revealed an underweight patient, with BMI (Body Mass Index) of 17.5 kg/m², normal secondary sex characteristics, pallor of the skin and mucosa. The hormonal profile revealed normal FSH (Follicle Stimulating Hormone) levels, low LH - Luteinizing Hormone (of 0.15 U/L, normal: 1.20-12.8 U/L), estradiol (of 11.2 pg/mL, normal: 49-291 pg/mL) and progesterone (of 1.13 ng/mL, normal: 5.16-18.56 ng/mL). No pathological changes were recorded at somatotropic, lactotropic, thyrotropic and corticotropic levels. The Diphereline stimulation test revealed functional integrity of the pituitary gland and ovaries. The progesterone withdrawal test was negative. There were no pathological findings on biochemical workup and the water deprivation test excluded diabetes insipidus. Morphological exploration of the hypothalamic-pituitary region by contrast-enhanced MRI (Magnetic Resonance Imaging) scan revealed a left pituitary microadenoma measuring 5 mm in diameter. Adequate diet and oral contraceptive treatment were recommended. Conclusion: Functional hypothalamic amenorrhea (FHA) is the most common cause of neuroendocrine amenorrhea. Identifying the context and causative factors is essential for making an appropriate therapeutic decision.

Keywords: amenorrhea, polydipsia, diphereline.

Rezumat

Introducere: Amenoreea funcţională hipotalamică este o provocare diagnostică, în special în asociere cu modificările structurale ale hipofizei. Prezentăm cazul unui pacient cu amenoree funcţională şi microadenom hipofizer, evaluat în mai multe centre medicale. Prezentare de caz: O femeie de 27 de ani a fost trimisă la clinica noastră pentru amenoree secundară instalată cu 18 luni înainte, insomnie, polidipsie (aproximativ 4-6 l aport de apă / zi) şi poliurie. Examinarea clinică a evidenţiat un pacient subponderal, cu IMC (indexul de masă corporală) de 17,5 kg / m², caracteristici sexuale secundare normale, paloare a pielii şi mucoaselor. Profilul hormonal a evidenţiat niveluri
INTRODUCTION

FHA is one of the most common causes of secondary amenorrhea, classified as hypogonadotropic hypogonadism due to an alteration of the pulsatile release of gonadotropin-releasing hormone (GnRH) from the hypothalamus. Disturbances in the hypothalamic-pituitary-ovarian axis may include a lower mean frequency of LH pulses, the complete absence of LH pulsatility, as well as a normal-appearing secretion pattern and higher mean frequency of LH pulses. Consequently, production of estrogen in the ovary will be reduced. Depending on the causative factor, FHA is divided into three categories: weight loss-related, exercise-related and stress-related. Secondary amenorrhea, defined as the absence of menses for 3 or more months, occurs in approximately 3-5% of adult women. According to the American Society of Reproductive Medicine, FHA is responsible for 20-35% of secondary amenorrhea cases and approximately 3% of primary amenorrhea cases. Although the exact risk is unknown, patients with menstrual irregularity or secondary amenorrhea are at risk of hyperprolactinemia and pituitary adenomas. Pituitary adenomas may present during puberty in association with delayed or incomplete development of secondary sex characteristics. Primary or secondary amenorrhea may be the most obvious clinical abnormality.

CASE REPORT

A 27-year-old female without significant medical history was admitted for evaluation due to the absence of menstrual cycles for more than 18 months, insomnia, polydipsia (around 4-6 l water intake/day) and polyuria. Clinical examination revealed weight of 42 kg, height of 167 cm, BMI (Body Mass Index) of 17.5 kg/m², normal blood pressure of 110/65 mmHg, heart rate of 74bpm, normal secondary sex characteristics, pallor of the skin and mucosa. The hormonal profile showed normal FSH (hormon foliculostimulant), LH (hormon luteinizant) of 0.15 U/L, normal: 1.20-12.8 U/L, estradiol (of 11.2 pg/mL, normal: 49-291 pg/mL) and progesterone (of 1.13 ng/mL, normal: 5.16-18.56 ng/mL). No pathological changes were recorded at somatotropic, lactotrope, thyrotrop and corticotrope levels (Table 1). Diphereline (Trip-torelin) stimulation test was performed: FSH, LH and estradiol were measured after administration of 0.1 mg dipherelines ©, at baseline, 4 hours and 24 hours, respectively. Increased levels of FSH and LH 4 hours after diphereline, as well as the adequate increase of estradiol, confirmed the diagnosis of FHA. Consequently, treatment with 0.075 mg triphorol made it possible to achieve normal fertility. The patient presented with a normal menstrual cycle and ovulation after 2 months of treatment. Follow-up for 6 months revealed a normal menstrual cycle and ovulation with normal hormonal levels. The patient was advised to continue taking the drug for 6 months and to have regular follow-up appointments. The patient was satisfied with the treatment and reported no side effects. Conclusions: FHA is a common cause of secondary amenorrhea with a reported prevalence of 3-5% in women. FHA is usually caused by a disturbance in the hypothalamic-pituitary-ovarian axis. The diagnosis of FHA is usually based on the absence of menses for 3 or more months, as well as a normal-appearing secretion pattern of LH pulses. FHA is usually treated with gonadotropin-releasing hormone agonists. Treatment with 0.075 mg triphorol was successful in this patient. The patient reported normal menstrual cycles and ovulation with normal hormonal levels after 2 months of treatment. The patient was advised to continue taking the drug for 6 months and to have regular follow-up appointments. The patient was satisfied with the treatment and reported no side effects. Primary or secondary amenorrhea may be the most obvious clinical abnormality.

Table 1. Endocrine parameters of a 27-year-old female patient diagnosed with pituitary adenoma and secondary amenorrhea

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Normal</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSH</td>
<td>1.50</td>
<td>0.4-4</td>
<td>μUI/mL</td>
</tr>
<tr>
<td>FT4</td>
<td>0.58</td>
<td>0.61-1.35</td>
<td>ng/dL</td>
</tr>
<tr>
<td>antiTPO</td>
<td>0.65</td>
<td><10</td>
<td>U/mL</td>
</tr>
<tr>
<td>antiTG</td>
<td><1.0</td>
<td><4</td>
<td>U/mL</td>
</tr>
<tr>
<td>PRL</td>
<td>7.33</td>
<td>3.3-26</td>
<td>ng/mL</td>
</tr>
<tr>
<td>Progesterone</td>
<td>1.13</td>
<td>5.16-18.56</td>
<td>ng/mL</td>
</tr>
<tr>
<td>Morningplasmacortisol</td>
<td>17.2</td>
<td>6-23</td>
<td>μg/dL</td>
</tr>
</tbody>
</table>

TSH=Thyroid Stimulating Hormone; FT4=Free Thyroxin; ATG=anti-thyroglobulin antibodies; ATPO=anti-thyroidperoxidase antibodies; PRL=prolactin.
tradiol levels after 24 hours confirmed the functional integrity of the pituitary and ovaries (Table 2). Pelvic ultrasound revealed a linear endometrium of approximately 3 mm, without pathological changes in ovarian morphology. The water deprivation test, carried out over a period of 6 hours, excluded diabetes insipidus. There were no pathological findings on biochemical workup. Morphological exploration of the hypothalamic-pituitary region by contrast-enhanced MRI showed a left pituitary microadenoma measuring 5 mm in diameter. Because no withdrawal bleeding appeared after oral progesterone administration, oral contraceptive treatment was initiated. Adequate diet was also recommended.

DISCUSSIONS

Functional hypothalamic amenorrhea should be differentiated from other forms of primary or secondary amenorrhea. In this case, the discovery of a pituitary adenoma on MRI raised the suspicion of hypogonadotropic hypogonadism caused by the pituitary tumor. At first sight, the presence of a polyuro-polydipsic syndrome was an argument in favor of a possible link between the adenoma and secondary amenorrhea.

The primary approach in determining the cause of secondary amenorrhea is the assessment of gonadotropin levels and identifying hypogonadotropic hypogonadism. The dipherelinetest is a keytool in the diagnosis of FHA, showing a positive response of gonadotropins to exogenous GnRH stimulation. This test distinguishes between hypothalamic dysfunction and primary pituitary diseases, also characterized by hypogonadism.

In this case the levels of FSH, LH and estradiol before and after dipherelinetest administration were highly suggestive for FHA. The patient’s history also advocates in favor of FHA: menarche occurred spontaneously at the age of 12, she had regular menstrual cycles up until the past 18 months, amenorrhea occurred in the context of weight loss, accompanied by repeated episodes of insomnia. The polyuro-polydipsic syndrome was also interpreted as a reaction to stress after the water restriction test excluded diabetes insipidus.

FHA should not be considered only as a symptom, such as amenorrhea. This disorder has a more profound clinical picture. The final endocrine consequence of GnRH and gonadotropin pulsatile secretion impairment is profound hypoestrogenism. Hypoestrogenic status has a negative impact on different aspects of female health, not just in menopausal women but also in younger ones. Normal estrogen levels and metabolic homeostasis have a major importance for the cardiovascular system, normal bone metabolism and mental health, especially in younger women.

Therefore, prolonged hypoestrogenism that occurs in young women may have critical significance in the years to come. For this reason, in our patient’s case we decided to initiate oral contraceptives. At the same time, we recommended limiting water intake, avoiding stressful situations and adequate food intake in order to reach a normal BMI. Periodic monitoring of the pituitary adenoma is required.

Pituitary incidentaloma is most frequently an incidental finding without a pattern related to age. Whether in this case it might represent a hallmark of a genetic late onset central hypogonadism is still challenging to confirm at this point.

CONCLUSION

Functional hypothalamic amenorrhea is an underestimated clinical problem. FHA patients should be carefully diagnosed and appropriately treated in order to prevent both short-term and, particularly, long-term medical consequences.

Compliance with ethics requirements: The authors declare no conflict of interest regarding this article. The authors declare that all the procedures and experiments of this study respect the ethical standards in the Helsinki Declaration of 1975, as revised in 2008(5), as well as the national law. Informed consent was obtained from all the patients included in the study.

Table 2. Dipherelinetestperformedon a 27-year-old womanwithsecondaryamenorrhea.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value 0 hours</th>
<th>Value 4 hours</th>
<th>Value 24 hours</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSH</td>
<td>3.14</td>
<td>20.7</td>
<td>9.05</td>
<td>mU/mL</td>
</tr>
<tr>
<td>LH</td>
<td>0.15 U/L</td>
<td>6.76</td>
<td>3.20</td>
<td>U/L</td>
</tr>
<tr>
<td>Estadiol</td>
<td>11.2</td>
<td>19.2</td>
<td>38.2</td>
<td>pg/mL</td>
</tr>
</tbody>
</table>

FSH: Follicle Stimulating Hormone; LH: Luteinizing Hormone.
References

